Derivation of 3-dimensional Heat Conduction Equation
Derivation of the 3D Heat Conduction Equation in Cartesian Coordinates
Assumptions
- Material is homogeneous and isotropic
- Thermal properties \( k, \rho, c_p \) are constant
- No fluid motion (pure conduction)
- Heat generation is considered (optional)
1. Control Volume and Energy Balance
Consider a differential control volume of size \( dx \times dy \times dz \). The energy conservation principle gives:
Net rate of heat accumulation = Heat in - Heat out + Internal heat generation

2. Fourier’s Law of Heat Conduction
In the x-direction:
Heat conducted in: \( q_x = -k \left(
\frac{\partial T}{\partial x} \right) \big|_x \)
Heat conducted out: \( q_{x+dx} = -k \left(
\frac{\partial T}{\partial x} \right) \big|_{x+dx} \)
Net heat flux in x-direction:
\( \frac{\partial}{\partial x} \left( -k \frac{\partial T}{\partial x} \right) dx\,dy\,dz \)
Similarly for y and z directions.
3. Total Heat Conducted In
\( \nabla \cdot (-k \nabla T) \cdot dx\,dy\,dz \)
If \( k \) is constant:
\( = -k \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) dx\,dy\,dz \)
4. Heat Stored in the Element
\( \rho c_p \frac{\partial T}{\partial t} \cdot dx\,dy\,dz \)
5. Internal Heat Generation
\( \dot{q} \cdot dx\,dy\,dz \)
6. Energy Balance Equation
Combining all terms:
\( \rho c_p \frac{\partial T}{\partial t} = k \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{q} \)
7. Final Form using Thermal Diffusivity
Let \( \alpha = \frac{k}{\rho c_p} \), then:
\[ \boxed{ \frac{\partial T}{\partial t} = \alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{\dot{q}}{\rho c_p} } \]
Special Cases
- No internal heat generation: \( \dot{q} = 0 \)
- Steady-state condition: \( \frac{\partial T}{\partial t} = 0 \)